Hashtag
Men's Weekly

How to Confidently Manage SMSF Setup Online

Setting up a self-managed super fund (SMSF) is becoming more straightforward thanks to secure online platforms. A fully digital ...

Why Regular Visits to a Trusted Dentist Matter More Than You Think

Seeing a dentist is often associated with pain or emergency situations. However, routine dental visits play a much larger role i...

Everything You Need to Know About Evaporative Cooling Installation in Melbourne Homes

Keeping your home comfortable during Melbourne’s warmer months can be a challenge, especially when energy bills keep rising. One...

How to Choose the Best Party Venues Adelaide for Your Next Event

Planning an event involves many moving parts, and one of the most important decisions you’ll make is choosing the right party ve...

5 Signs Your Loved One Might Benefit from In-Home Therapy Support

Living with a disability or health condition can present daily challenges, especially when accessing regular therapy support out...

1HZ Alternator and 1KD Rocker Cover: Diesel Engine Essentials

Maintaining Toyota's legendary diesel engines requires understanding critical components like the 1HZ alternator and 1KD rocker ...



Professor Mingxin Huang and Dr Kaiping Yu
Professor Mingxin Huang and Dr Kaiping Yu


This marks another major achievement by Professor Huang's team in its 'Super Steel' Project, following the development of the anti-COVID-19 stainless steel in 2021, and ultra-strong and ultra-tough Super Steel in 2017 and 2020 respectively.

The new steel developed by the team exhibits high corrosion resistance, enabling its potential application for green hydrogen production from seawater, where a novel sustainable solution is still in the pipeline.

The performance of the new steel in salt water electrolyser is comparable to the current industrial practice using Titanium as structural parts to produce hydrogen from desalted seawater or acid, while the cost of the new steel is much cheaper.

The discovery has been published in Materials Today in the paper titled "A sequential dual-passivation strategy for designing stainless steel used above water oxidation." The research achievements are currently applying for patents in multiple countries, and two of them has already been granted authorisation.

Since its discovery a century ago, stainless steel has always been an important material widely used in corrosive environments. Chromium is an essential element in establishing the corrosion resistance of stainless steel. Passive film is generated through the oxidation of chromium (Cr) and protects stainless steel in natural environments. Unfortunately, this conventional single-passivation mechanism based on Cr has halted further advancement of stainless steel. Owing to the further oxidation of stable Cr2O3 into soluble Cr(VI) species, tranpassive corrosion inevitably occurs in conventional stainless steel at ~1000 mV (saturated calomel electrode, SCE), which is below the potential required for water oxidation at ~1600 mV.

254SMO super stainless steel, for instance, is a benchmark among Cr-based anti-corrosion alloys and has superior pitting resistance in seawater; however, transpassive corrosion limits its application at higher potentials.

By using a "sequential dual-passivation" strategy, Professor Huang's research team developed the novel SS-H2 with superior corrosion resistance. In addition to the single Cr2O3-based passive layer, a secondary Mn-based layer forms on the preceding Cr-based layer at ~720 mV. The sequential dual-passivation mechanism prevents the SS-H2 from corrosion in chloride media to an ultra-high potential of 1700 mV. The SS-H2 demonstrates a fundamental breakthrough over conventional stainless steel.

"Initially, we did not believe it because the prevailing view is that Mn impairs the corrosion resistance of stainless steel. Mn-based passivation is a counter-intuitive discovery, which cannot be explained by current knowledge in corrosion science. However, when numerous atomic-level results were presented, we were convinced. Beyond being surprised, we cannot wait to exploit the mechanism," said Dr Kaiping Yu, the first author of the article, whose PhD is supervised by Professor Huang.

From the initial discovery of the innovative stainless steel to achieving a breakthrough in scientific understanding, and ultimately preparing for the official publication and hopefully its industrial application, the team devoted nearly six years to the work.

"Different from the current corrosion community, which mainly focuses on the resistance at natural potentials, we specialises in developing high-potential-resistant alloys. Our strategy overcame the fundamental limitation of conventional stainless steel and established a paradigm for alloy development applicable at high potentials. This breakthrough is exciting and brings new applications." Professor Huang said.

At present, for water electrolyser in desalted seawater or acid solutions, expensive Au- or Pt-coated Ti are required for structural components. For instance, the total cost of a 10-megawatt PEM electrolysis tank system in its current stage is approximately HK$17.8 million, with the structural components contributing up to 53% of the overall expense. The breakthrough made by Professor Huang's team makes it possible to replace these expensive structural components with more economically steel. As estimated, the employment of SS-H2 is expected to cut the cost of structural material by about 40 times, demonstrating a great foreground of industrial applications.

"From experimental materials to real products, such as meshes and foams, for water electrolysers, there are still challenging tasks at hand. Currently, we have made a big step toward industrialisation. Tons of SS-H2-based wire has been produced in collaboration with a factory from the Mainland. We are moving forward in applying the more economical SS-H2 in hydrogen production from renewable sources," added Professor Huang.

Link to the paper:
https://www.sciencedirect.com/science/article/abs/pii/S1369702123002390

Please click here for a short video showing how the new stainless steel produces hydrogen in salt water.

Hashtag: #HKU

The issuer is solely responsible for the content of this announcement.

IN THE NEWS

Generali Hong Kong Empowers Over 500 Families In Need

HONG KONG SAR - Media OutReach Newswire - 7 August 2024 - The Human Safety Net, the global movement of p.

Motorcycle accessories all riders should own

Motorcycles allow a wide range of benefits to a commuter’s lifestyle. They are an excellent medium of t.

PolyU develops versatile fluidic platform for programmable liquid processing

HONG KONG SAR - Media OutReach Newswire - 8 August 2024 - Society relies heavily on diverse fluidic tech.

Coopers Hill Acquires Scape Design, Strengthening Its Global Leadership in Hospitality Landscape Arc…

SINGAPORE - Media OutReach Newswire - 5 February 2025 - Coopers Hill, an international consultancy spe.

Queensland coffee lovers launch war on waste

Queensland coffee lovers can now feel good about their takeaway caffeine habit with Merlo Coffee today .

Coffee is the next big ingredient in defeating hair loss

The shower starts to scare us; a look in the mirror seems surreal; wonderful old memories turn sadden.

Health & Wellness

Why Regular Visits to a Trusted Dentist Matter More Than You Think

Hashtag.net.au - avatar Hashtag.net.au

Seeing a dentist is often associated with pain or emergency situations. However, routine dental visits play a much larger role in maintaining not only oral health but your overall wellbeing. Whether...

5 Signs Your Loved One Might Benefit from In-Home Therapy Support

Hashtag.net.au - avatar Hashtag.net.au

Living with a disability or health condition can present daily challenges, especially when accessing regular therapy support outside the home. That’s why many individuals and their families are turn...

Connecting You to Community: The Role of Your NDIS Disability Services Provider in Inclusion

Hashtag.net.au - avatar Hashtag.net.au

(Source)When discussing disability services, it is tempting to focus on the practical aspects, such as daily routines, mobility aids, and support workers. However, after all that, there is another thi...