Hashtag
.


Professor Mingxin Huang and Dr Kaiping Yu
Professor Mingxin Huang and Dr Kaiping Yu


This marks another major achievement by Professor Huang's team in its 'Super Steel' Project, following the development of the anti-COVID-19 stainless steel in 2021, and ultra-strong and ultra-tough Super Steel in 2017 and 2020 respectively.

The new steel developed by the team exhibits high corrosion resistance, enabling its potential application for green hydrogen production from seawater, where a novel sustainable solution is still in the pipeline.

The performance of the new steel in salt water electrolyser is comparable to the current industrial practice using Titanium as structural parts to produce hydrogen from desalted seawater or acid, while the cost of the new steel is much cheaper.

The discovery has been published in Materials Today in the paper titled "A sequential dual-passivation strategy for designing stainless steel used above water oxidation." The research achievements are currently applying for patents in multiple countries, and two of them has already been granted authorisation.

Since its discovery a century ago, stainless steel has always been an important material widely used in corrosive environments. Chromium is an essential element in establishing the corrosion resistance of stainless steel. Passive film is generated through the oxidation of chromium (Cr) and protects stainless steel in natural environments. Unfortunately, this conventional single-passivation mechanism based on Cr has halted further advancement of stainless steel. Owing to the further oxidation of stable Cr2O3 into soluble Cr(VI) species, tranpassive corrosion inevitably occurs in conventional stainless steel at ~1000 mV (saturated calomel electrode, SCE), which is below the potential required for water oxidation at ~1600 mV.

254SMO super stainless steel, for instance, is a benchmark among Cr-based anti-corrosion alloys and has superior pitting resistance in seawater; however, transpassive corrosion limits its application at higher potentials.

By using a "sequential dual-passivation" strategy, Professor Huang's research team developed the novel SS-H2 with superior corrosion resistance. In addition to the single Cr2O3-based passive layer, a secondary Mn-based layer forms on the preceding Cr-based layer at ~720 mV. The sequential dual-passivation mechanism prevents the SS-H2 from corrosion in chloride media to an ultra-high potential of 1700 mV. The SS-H2 demonstrates a fundamental breakthrough over conventional stainless steel.

"Initially, we did not believe it because the prevailing view is that Mn impairs the corrosion resistance of stainless steel. Mn-based passivation is a counter-intuitive discovery, which cannot be explained by current knowledge in corrosion science. However, when numerous atomic-level results were presented, we were convinced. Beyond being surprised, we cannot wait to exploit the mechanism," said Dr Kaiping Yu, the first author of the article, whose PhD is supervised by Professor Huang.

From the initial discovery of the innovative stainless steel to achieving a breakthrough in scientific understanding, and ultimately preparing for the official publication and hopefully its industrial application, the team devoted nearly six years to the work.

"Different from the current corrosion community, which mainly focuses on the resistance at natural potentials, we specialises in developing high-potential-resistant alloys. Our strategy overcame the fundamental limitation of conventional stainless steel and established a paradigm for alloy development applicable at high potentials. This breakthrough is exciting and brings new applications." Professor Huang said.

At present, for water electrolyser in desalted seawater or acid solutions, expensive Au- or Pt-coated Ti are required for structural components. For instance, the total cost of a 10-megawatt PEM electrolysis tank system in its current stage is approximately HK$17.8 million, with the structural components contributing up to 53% of the overall expense. The breakthrough made by Professor Huang's team makes it possible to replace these expensive structural components with more economically steel. As estimated, the employment of SS-H2 is expected to cut the cost of structural material by about 40 times, demonstrating a great foreground of industrial applications.

"From experimental materials to real products, such as meshes and foams, for water electrolysers, there are still challenging tasks at hand. Currently, we have made a big step toward industrialisation. Tons of SS-H2-based wire has been produced in collaboration with a factory from the Mainland. We are moving forward in applying the more economical SS-H2 in hydrogen production from renewable sources," added Professor Huang.

Link to the paper:
https://www.sciencedirect.com/science/article/abs/pii/S1369702123002390

Please click here for a short video showing how the new stainless steel produces hydrogen in salt water.

Hashtag: #HKU

The issuer is solely responsible for the content of this announcement.

How to Choose the Right Dining Table and Chairs

Choosing the right dining table and chairs requires careful consideration and proper planning. The best dining set works for you...

How to Turn Your Move into a Melbourne Adventure

Moving can be a daunting task—packing up your life and transporting it to a new location is stressful for everyone. But what if ...

How to Maintain Your Oral Health During Stressful Times

Life can be a bit like an Australian outback road—full of twists, turns, and the occasional bump. During these hectic, stressful...

How to Protect Sandstone from Harsh Weather Conditions

Sandstone is a beautiful, natural material often used in outdoor spaces to create a timeless and rustic aesthetic. Whether it’s ...

Mandurah Home Builders: Luxury Two-Storey Home Builders

Specialist Mandurah home builders of two story homes present some great opportunities for new home builders, particularly anyone s...

Common End of Lease Deductions and How to Avoid Them

Moving out of a rental property can be both exciting and stressful, especially when it comes to the end of lease process. One of...

IN THE NEWS

PropertyGuru Celebrates Singapore with "A Sense of Home" Campaign

SINGAPORE - Media OutReach Newswire - 7 August 2024 - As Singapore commemorates another year of ind.

YesAsia Holdings 2024 Interim Net Profit Rises Sixfold to US$11.1 Million Total Revenue Up by 80.2% …

Sustaining Momentum Fueled by Robust Global Demand for K-Beauty Products Results Highlights .

Green Transition: An Irreversible Global Trend and Vingroup’s Pioneering Steps

HANOI, VIETNAM - Media OutReach Newswire - 20 August 2024 - Vingroup, Vietnam's largest private conglome.

Finex Launches Promotion to Support New Trading App

JAKARTA, INDONESIA - Media OutReach Newswire - 1 October 2024 - Finex, an Indonesian broker with over a.

Amazon Singapore Kicks Off 12 Days of Christmas Shopping with Black Friday Deals

Holiday shopping starts early as Amazon.sg offers tens of thousands of holiday deals from 21 Nove.

What Are the Tools Do You Use for Content Writing

Online content writing tools have got something about themselves that is highly irresistible. They are .

Health & Wellness

How to Maintain Your Oral Health During Stressful Times

Hashtag.net.au - avatar Hashtag.net.au

Life can be a bit like an Australian outback road—full of twists, turns, and the occasional bump. During these hectic, stressful times, it’s all too easy to let your oral health fall by the wayside...

The impact of visual art on mental health and productivity

Hashtag.net.au - avatar Hashtag.net.au

In a world where stress and anxiety often take center stage, the presence of visual art in our daily environments offers a quiet yet profound counterbalance. Posters and paintings are not just decor...

Understanding the Environmental and Health Impacts of Waste Disposal: Essential Insights

Hashtag.net.au - avatar Hashtag.net.au

🌎♻️Explore the health & environmental impacts of waste disposal. Dive into essential insights💡for a sustainable future! #WasteManagement #Health🌿🌍 Waste disposal is an inevitable aspect of mode...