Hashtag
Men's Weekly

How to Choose the Best Asbestos Removalist Melbourne for Your Construction Project

When planning a construction or renovation project in Melbourne, ensuring the safety of your site is paramount. One of the hidde...

How Does a Dual Battery System Actually Work

A dual battery system is essential for those who love off-grid adventures or need reliable power for work vehicles. It plays a cru...

What Makes a Power Pack Essential for Off-Grid Trips

Embarking on an off-grid adventure invites you to reconnect with nature, far from the convenience of the electric grid. Yet, stayi...

Are Home Solar Panels Worth the Investment Today?

Solar panels offer the promise of significant energy savings and a smaller carbon footprint. Homeowners are increasingly aware of ...

A Permanent Fix: Why More Patients Are Choosing Dental Implants

Among the myriad of advancements in the field of dentistry, none have impacted as radically as dental implants. A last option no...

Smile Confidently: Sydney's Best Cosmetic Dentists for Invisalign Treatment

A warm, welcoming smile can change how you see yourself and how others see you. But to so many, crooked or uneven teeth will obs...



Professor Mingxin Huang and Dr Kaiping Yu
Professor Mingxin Huang and Dr Kaiping Yu


This marks another major achievement by Professor Huang's team in its 'Super Steel' Project, following the development of the anti-COVID-19 stainless steel in 2021, and ultra-strong and ultra-tough Super Steel in 2017 and 2020 respectively.

The new steel developed by the team exhibits high corrosion resistance, enabling its potential application for green hydrogen production from seawater, where a novel sustainable solution is still in the pipeline.

The performance of the new steel in salt water electrolyser is comparable to the current industrial practice using Titanium as structural parts to produce hydrogen from desalted seawater or acid, while the cost of the new steel is much cheaper.

The discovery has been published in Materials Today in the paper titled "A sequential dual-passivation strategy for designing stainless steel used above water oxidation." The research achievements are currently applying for patents in multiple countries, and two of them has already been granted authorisation.

Since its discovery a century ago, stainless steel has always been an important material widely used in corrosive environments. Chromium is an essential element in establishing the corrosion resistance of stainless steel. Passive film is generated through the oxidation of chromium (Cr) and protects stainless steel in natural environments. Unfortunately, this conventional single-passivation mechanism based on Cr has halted further advancement of stainless steel. Owing to the further oxidation of stable Cr2O3 into soluble Cr(VI) species, tranpassive corrosion inevitably occurs in conventional stainless steel at ~1000 mV (saturated calomel electrode, SCE), which is below the potential required for water oxidation at ~1600 mV.

254SMO super stainless steel, for instance, is a benchmark among Cr-based anti-corrosion alloys and has superior pitting resistance in seawater; however, transpassive corrosion limits its application at higher potentials.

By using a "sequential dual-passivation" strategy, Professor Huang's research team developed the novel SS-H2 with superior corrosion resistance. In addition to the single Cr2O3-based passive layer, a secondary Mn-based layer forms on the preceding Cr-based layer at ~720 mV. The sequential dual-passivation mechanism prevents the SS-H2 from corrosion in chloride media to an ultra-high potential of 1700 mV. The SS-H2 demonstrates a fundamental breakthrough over conventional stainless steel.

"Initially, we did not believe it because the prevailing view is that Mn impairs the corrosion resistance of stainless steel. Mn-based passivation is a counter-intuitive discovery, which cannot be explained by current knowledge in corrosion science. However, when numerous atomic-level results were presented, we were convinced. Beyond being surprised, we cannot wait to exploit the mechanism," said Dr Kaiping Yu, the first author of the article, whose PhD is supervised by Professor Huang.

From the initial discovery of the innovative stainless steel to achieving a breakthrough in scientific understanding, and ultimately preparing for the official publication and hopefully its industrial application, the team devoted nearly six years to the work.

"Different from the current corrosion community, which mainly focuses on the resistance at natural potentials, we specialises in developing high-potential-resistant alloys. Our strategy overcame the fundamental limitation of conventional stainless steel and established a paradigm for alloy development applicable at high potentials. This breakthrough is exciting and brings new applications." Professor Huang said.

At present, for water electrolyser in desalted seawater or acid solutions, expensive Au- or Pt-coated Ti are required for structural components. For instance, the total cost of a 10-megawatt PEM electrolysis tank system in its current stage is approximately HK$17.8 million, with the structural components contributing up to 53% of the overall expense. The breakthrough made by Professor Huang's team makes it possible to replace these expensive structural components with more economically steel. As estimated, the employment of SS-H2 is expected to cut the cost of structural material by about 40 times, demonstrating a great foreground of industrial applications.

"From experimental materials to real products, such as meshes and foams, for water electrolysers, there are still challenging tasks at hand. Currently, we have made a big step toward industrialisation. Tons of SS-H2-based wire has been produced in collaboration with a factory from the Mainland. We are moving forward in applying the more economical SS-H2 in hydrogen production from renewable sources," added Professor Huang.

Link to the paper:
https://www.sciencedirect.com/science/article/abs/pii/S1369702123002390

Please click here for a short video showing how the new stainless steel produces hydrogen in salt water.

Hashtag: #HKU

The issuer is solely responsible for the content of this announcement.

IN THE NEWS

HOME RENOVATION - A COMPREHENSIVE GUIDE

Everybody wishes to own a house of their dreams which has the comfort, beauty and an attraction which f.

GrandTech Cloud (Singapore)’s "Pizza Blitz" Campaign – To Introduce "A Friend to Star…

SINGAPORE - Media OutReach Newswire - 20 February 2025 - GrandTech Cloud Services (GCS) announced t.

Ascott unveils brand refresh of The Unlimited Collection as brand portfolio triples riding on growth…

The Unlimited Collection focuses on cultural charms to meet travellers’ aspirations for authentic.

13 Ways PDFs are Vulnerable

13 Ways PDFs are Vulnerable PDFs, while a convenient format for document sharing, can also come with s.

7 Practical Tips for Paddle Boarding At Night

Paddle boarding is the kind of sport that one can do at any time. If you are the kind of outdoor enthusia.

7 Questions to Ask When Choosing a Conveyancer

Buying or selling a property is a significant milestone, and having the right conveyancer in Melbourne .

Health & Wellness

A Permanent Fix: Why More Patients Are Choosing Dental Implants

Hashtag.net.au - avatar Hashtag.net.au

Among the myriad of advancements in the field of dentistry, none have impacted as radically as dental implants. A last option not long ago, today, implants are the go-to solution for millions of ind...

Smile Confidently: Sydney's Best Cosmetic Dentists for Invisalign Treatment

Hashtag.net.au - avatar Hashtag.net.au

A warm, welcoming smile can change how you see yourself and how others see you. But to so many, crooked or uneven teeth will obstruct smiling openly. Modern cosmetic dentistry has answers, though, t...

Will Anyone Notice My Clear Aligners? Here’s the Honest Truth

Hashtag.net.au - avatar Hashtag.net.au

Image by freepikClear aligners have become hugely popular in Australia, promising discreet orthodontic treatment without the obvious look of metal braces. Yet, despite their growing popularity, a co...